

Descubre las ventajas de Prime con un periodo de prueba de 30 días

Envío rápido, gratis e ilimitado
Envío en 1 día en millones de productos

Prime Video
Las mejores series y películas, y los últimos estrenos de Amazon Originals.

Acceso Prioritario
Accede a las Ofertas flash, 30 minutos antes de su inicio

Descarga la app de Kindle gratuita y comienza a leer libros para Kindle al instante en tu smartphone, tablet u ordenador. No necesitas un dispositivo Kindle.
Lee al instante en tu navegador con Kindle para Web.
Con la cámara de tu teléfono móvil, escanea el siguiente código y descarga la app de Kindle.
Graph Data Mining: Algorithm, Security and Application (Big Data Management) Tapa blanda – 17 julio 2022
Opciones de compra y complementos
Graph data is powerful, thanks to its ability to model arbitrary relationship between objects and is encountered in a range of real-world applications in fields such as bioinformatics, traffic network, scientific collaboration, world wide web and social networks. Graph data mining is used to discover useful information and knowledge from graph data. The complications of nodes, links and the semi-structure form present challenges in terms of the computation tasks, e.g., node classification, link prediction, and graph classification. In this context, various advanced techniques, including graph embedding and graph neural networks, have recently been proposed to improve the performance of graph data mining.
This book provides a state-of-the-art review of graph data mining methods. It addresses a current hot topic – the security of graph data mining – and proposes a series of detection methods to identify adversarial samples in graph data. In addition, it introduces readers to graph augmentation and subgraph networks to further enhance the models, i.e., improve their accuracy and robustness. Lastly, the book describes the applications of these advanced techniques in various scenarios, such as traffic networks, social and technical networks, and blockchains.
- Longitud de impresión260 páginas
- IdiomaInglés
- EditorialSpringer
- Fecha de publicación17 julio 2022
- Dimensiones15.5 x 1.5 x 23.5 cm
- ISBN-109811626111
- ISBN-13978-9811626111
Descripción del producto
Contraportada
Graph data is powerful, thanks to its ability to model arbitrary relationship between objects and is encountered in a range of real-world applications in fields such as bioinformatics, traffic network, scientific collaboration, world wide web and social networks. Graph data mining is used to discover useful information and knowledge from graph data. The complications of nodes, links and the semi-structure form present challenges in terms of the computation tasks, e.g., node classification, link prediction, and graph classification. In this context, various advanced techniques, including graph embedding and graph neural networks, have recently been proposed to improve the performance of graph data mining.
This book provides a state-of-the-art review of graph data mining methods. It addresses a current hot topic - the security of graph data mining - and proposes a series of detection methods to identify adversarial samples in graph data. In addition, it introduces readers to graph augmentation and subgraph networks to further enhance the models, i.e., improve their accuracy and robustness. Lastly, the book describes the applications of these advanced techniques in various scenarios, such as traffic networks, social and technical networks, and blockchains.
Biografía del autor
Qi Xuan is a Professor at the Institute of Cyberspace Security, Zhejiang University of Technology, Hangzhou, China. His current research interests include network science, graph data mining, cyberspace security, and deep learning. He has published more than 50 papers in leading journals and conferences, including IEEE TKDE, IEEE TIE, IEEE TNSE, ICSE, and FSE. He is the reviewer of the journals such like IEEE TKDE, IEEE TIE, IEEE TII, and IEEE TNSE.
Zhongyuan Ruan is a lecturer at the Institute of Cyberspace Security, Zhejiang University of Technology, Hangzhou, China. His current research interests include network science, such as epidemic and information spreading in complex networks, and traffic networks. He has published more than 20 papers in journals such as Physical Review Letters, Physical Review E, Chaos, Scientific Reports, and Physica A.
Yong Min is an Associate Professor at the Institute of Cyberspace Security, Zhejiang University ofTechnology, Hangzhou, China. His research interests include social network analysis, computational communication, and artificial intelligence algorithms. He was named an Excellent Young Teacher of Zhejiang University of Technology. He has hosted and participated in more than ten projects, including those by national and provincial natural science foundations. He has also published over 30 papers, including two in the leading journal Nature and Science, and he holds more than three patents.Detalles del producto
- Editorial : Springer; 1st edition 2021 (17 julio 2022)
- Idioma : Inglés
- Tapa blanda : 260 páginas
- ISBN-10 : 9811626111
- ISBN-13 : 978-9811626111
- Peso del producto : 403 g
- Dimensiones : 15.5 x 1.5 x 23.5 cm
Opiniones de clientes
- 5 estrella(s)4 estrella(s)3 estrella(s)2 estrella(s)1 estrella(s)5 estrella(s)0 %0 %0 %0 %0 %0 %
- 5 estrella(s)4 estrella(s)3 estrella(s)2 estrella(s)1 estrella(s)4 estrella(s)0 %0 %0 %0 %0 %0 %
- 5 estrella(s)4 estrella(s)3 estrella(s)2 estrella(s)1 estrella(s)3 estrella(s)0 %0 %0 %0 %0 %0 %
- 5 estrella(s)4 estrella(s)3 estrella(s)2 estrella(s)1 estrella(s)2 estrella(s)0 %0 %0 %0 %0 %0 %
- 5 estrella(s)4 estrella(s)3 estrella(s)2 estrella(s)1 estrella(s)1 estrella(s)0 %0 %0 %0 %0 %0 %
Las opiniones de los clientes, incluidas las valoraciones del producto, ayudan a otros clientes a obtener más información sobre el producto y a decidir si es el adecuado para ellos.
Para calcular el desglose general de valoraciones y porcentajes, no utilizamos un simple promedio. Nuestro sistema también considera factores como cuán reciente es una reseña y si el autor de la opinión compró el producto en Amazon. También analiza las reseñas para verificar su fiabilidad.
Más información sobre cómo funcionan las opiniones de los clientes en Amazon