G20: Nueva película original - 10 de abril
176,79 €
Los precios de los productos vendidos en Amazon incluyen el IVA. Dependiendo de tu dirección de entrega, el IVA puede variar al finalizar la compra. Para obtener más información, haz clic aqui.
Devoluciones GRATIS
Entrega GRATIS el lunes, 10 de marzo. Ver detalles
entrega más rápida el sábado, 8 de marzo. Haz el pedido en 14 horas 52 mins. Ver detalles
En stock
176,79 € () Incluye las opciones seleccionadas. Incluye el pago mensual inicial y las opciones seleccionadas. Detalles
Precio
Subtotal
176,79 €
Subtotal
Desglose inicial del pago
Los gastos de envío, la fecha de entrega y el total del pedido (con impuestos) se muestran al finalizar la compra.
Envío desde
Amazon
Amazon
Envío desde
Amazon
Vendido por
Amazon
Amazon
Vendido por
Amazon
Devoluciones
Se puede devolver en un plazo de 30 días a partir de la fecha de recepción
Se puede devolver en un plazo de 30 días a partir de la fecha de recepción
El producto se puede devolver en su condición original para obtener un reembolso completo en un plazo de 30 días a partir de la fecha de recepción
Pago
Transacción segura
Tu transacción es segura
En Amazon, nos esforzamos por proteger tu seguridad y privacidad. Nuestro sistema de seguridad de pagos encripta tu información durante la transmisión de datos. No compartimos los datos de tu tarjeta de crédito con vendedores externos, ni vendemos tu información a terceros. Más información
Imagen del logo de la app de Kindle

Descarga la app de Kindle gratuita y comienza a leer libros para Kindle al instante en tu smartphone, tablet u ordenador. No necesitas un dispositivo Kindle.

Lee al instante en tu navegador con Kindle para Web.

Con la cámara de tu teléfono móvil, escanea el siguiente código y descarga la app de Kindle.

Código QR para descargar la app de Kindle

Graph Data Mining: Algorithm, Security and Application (Big Data Management) Tapa blanda – 17 julio 2022


{"desktop_buybox_group_1":[{"displayPrice":"176,79 €","priceAmount":176.79,"currencySymbol":"€","integerValue":"176","decimalSeparator":",","fractionalValue":"79","symbolPosition":"right","hasSpace":true,"showFractionalPartIfEmpty":true,"offerListingId":"CZYQLG6GR9wM4srgcB5vCvIqGckOmoLT7AY7LTiKFiWxUbcAcDxNrSP4bgRnatSgLKZ%2BW38DFwYcMvEN9UgQi%2BwhmRvvpO8YRBMqkJ2iSQzqg77ZZzkP51AgLE8PjzsfZlqEYsfmiuU%2FchcSkCA6eA%3D%3D","locale":"es-ES","buyingOptionType":"NEW","aapiBuyingOptionIndex":0}]}

Opciones de compra y complementos

Graph data is powerful, thanks to its ability to model arbitrary relationship between objects and is encountered in a range of real-world applications in fields such as bioinformatics, traffic network, scientific collaboration, world wide web and social networks. Graph data mining is used to discover useful information and knowledge from graph data. The complications of nodes, links and the semi-structure form present challenges in terms of the computation tasks, e.g., node classification, link prediction, and graph classification. In this context, various advanced techniques, including graph embedding and graph neural networks, have recently been proposed to improve the performance of graph data mining.

This book provides a state-of-the-art review of graph data mining methods. It addresses a current hot topic – the security of graph data mining – and proposes a series of detection methods to identify adversarial samples in graph data. In addition, it introduces readers to graph augmentation and subgraph networks to further enhance the models, i.e., improve their accuracy and robustness. Lastly, the book describes the applications of these advanced techniques in various scenarios, such as traffic networks, social and technical networks, and blockchains.

Ahorra un 15% en Peg Perego

Descripción del producto

Contraportada

Graph data is powerful, thanks to its ability to model arbitrary relationship between objects and is encountered in a range of real-world applications in fields such as bioinformatics, traffic network, scientific collaboration, world wide web and social networks. Graph data mining is used to discover useful information and knowledge from graph data. The complications of nodes, links and the semi-structure form present challenges in terms of the computation tasks, e.g., node classification, link prediction, and graph classification. In this context, various advanced techniques, including graph embedding and graph neural networks, have recently been proposed to improve the performance of graph data mining.

This book provides a state-of-the-art review of graph data mining methods. It addresses a current hot topic - the security of graph data mining - and proposes a series of detection methods to identify adversarial samples in graph data. In addition, it introduces readers to graph augmentation and subgraph networks to further enhance the models, i.e., improve their accuracy and robustness. Lastly, the book describes the applications of these advanced techniques in various scenarios, such as traffic networks, social and technical networks, and blockchains.

Biografía del autor

Qi Xuan is a Professor at the Institute of Cyberspace Security,  Zhejiang University of Technology, Hangzhou, China. His current research interests include network science, graph data mining, cyberspace security, and deep learning. He has published more than 50 papers in leading journals and conferences, including IEEE TKDE, IEEE TIE, IEEE TNSE, ICSE, and FSE. He is the reviewer of the journals such like IEEE TKDE, IEEE TIE, IEEE TII, and IEEE TNSE.

Zhongyuan Ruan is a lecturer at the Institute of Cyberspace Security, Zhejiang University of Technology, Hangzhou, China. His current research interests include network science, such as epidemic and information spreading in complex networks, and traffic networks. He has published more than 20 papers in journals such as Physical Review Letters, Physical Review E, Chaos, Scientific Reports, and Physica A.

Yong Min is an Associate Professor at the Institute of Cyberspace Security, Zhejiang University ofTechnology, Hangzhou, China. His research interests include social network analysis, computational communication, and artificial intelligence algorithms. He was named an Excellent Young Teacher of Zhejiang University of Technology. He has hosted and participated in more than ten projects, including those by national and provincial natural science foundations. He has also published over 30 papers, including two in the leading journal Nature and Science, and he holds more than three patents.

Detalles del producto

  • Editorial ‏ : ‎ Springer; 1st edition 2021 (17 julio 2022)
  • Idioma ‏ : ‎ Inglés
  • Tapa blanda ‏ : ‎ 260 páginas
  • ISBN-10 ‏ : ‎ 9811626111
  • ISBN-13 ‏ : ‎ 978-9811626111
  • Peso del producto ‏ : ‎ 403 g
  • Dimensiones ‏ : ‎ 15.5 x 1.5 x 23.5 cm

Opiniones de clientes

  • 5 estrella(s)
    0 %
  • 4 estrella(s)
    0 %
  • 3 estrella(s)
    0 %
  • 2 estrella(s)
    0 %
  • 1 estrella(s)
    0 %

Valorar este producto

Comparte tu opinión con otros clientes

Ninguna opinión de cliente